dynamite - Bayesian Modeling and Causal Inference for Multivariate Longitudinal Data
Easy-to-use and efficient interface for Bayesian inference of complex panel (time series) data using dynamic multivariate panel models by Helske and Tikka (2024) <doi:10.1016/j.alcr.2024.100617>. The package supports joint modeling of multiple measurements per individual, time-varying and time-invariant effects, and a wide range of discrete and continuous distributions. Estimation of these dynamic multivariate panel models is carried out via 'Stan'. For an in-depth tutorial of the package, see (Tikka and Helske, 2024) <doi:10.48550/arXiv.2302.01607>.
Last updated 7 days ago
bayesian-inferencepanel-datastanstatistical-models
7.99 score 27 stars 19 scripts 417 downloadsdosearch - Causal Effect Identification from Multiple Incomplete Data Sources
Identification of causal effects from arbitrary observational and experimental probability distributions via do-calculus and standard probability manipulations using a search-based algorithm by Tikka, Hyttinen and Karvanen (2021) <doi:10.18637/jss.v099.i05>. Allows for the presence of mechanisms related to selection bias (Bareinboim and Tian, 2015) <doi:10.1609/aaai.v29i1.9679>, transportability (Bareinboim and Pearl, 2014) <http://ftp.cs.ucla.edu/pub/stat_ser/r443.pdf>, missing data (Mohan, Pearl, and Tian, 2013) <http://ftp.cs.ucla.edu/pub/stat_ser/r410.pdf>) and arbitrary combinations of these. Also supports identification in the presence of context-specific independence (CSI) relations through labeled directed acyclic graphs (LDAG). For details on CSIs see (Corander et al., 2019) <doi:10.1016/j.apal.2019.04.004>.
Last updated 4 months ago
c-plus-pluscausal-inferencecausal-modelscausalitycausality-algorithmsdirected-acyclic-graphgraphslabeled-graphs
5.50 score 7 stars 1 packages 8 scripts 491 downloadscausaleffect - Deriving Expressions of Joint Interventional Distributions and Transport Formulas in Causal Models
Functions for identification and transportation of causal effects. Provides a conditional causal effect identification algorithm (IDC) by Shpitser, I. and Pearl, J. (2006) <http://ftp.cs.ucla.edu/pub/stat_ser/r329-uai.pdf>, an algorithm for transportability from multiple domains with limited experiments by Bareinboim, E. and Pearl, J. (2014) <http://ftp.cs.ucla.edu/pub/stat_ser/r443.pdf>, and a selection bias recovery algorithm by Bareinboim, E. and Tian, J. (2015) <http://ftp.cs.ucla.edu/pub/stat_ser/r445.pdf>. All of the previously mentioned algorithms are based on a causal effect identification algorithm by Tian , J. (2002) <http://ftp.cs.ucla.edu/pub/stat_ser/r309.pdf>.
Last updated 2 years ago
causal-inferencecausal-modelscausality-algorithmsdirected-acyclic-graphgraphsidentifiabilityidentificationigraph
5.28 score 29 stars 1 packages 44 scripts 600 downloadscfid - Identification of Counterfactual Queries in Causal Models
Facilitates the identification of counterfactual queries in structural causal models via the ID* and IDC* algorithms by Shpitser, I. and Pearl, J. (2007, 2008) <arXiv:1206.5294>, <https://jmlr.org/papers/v9/shpitser08a.html>. Provides a simple interface for defining causal diagrams and counterfactual conjunctions. Construction of parallel worlds graphs and counterfactual graphs is carried out automatically based on the counterfactual query and the causal diagram. See Tikka, S. (2023) <doi:10.32614/RJ-2023-053> for a tutorial of the package.
Last updated 5 months ago
causal-inferencecausal-modelscausality-algorithmscounterfactualcounterfactualsdirected-acyclic-graphidentifiability
4.50 score 7 stars 1 packages 2 scripts 305 downloads